Papers

Learn more about AI2's Lasting Impact Award
Viewing 1-10 of 282 papers
  • TRAM: Bridging Trust Regions and Sharpness Aware Minimization

    Tom Sherborne, Naomi Saphra, Pradeep Dasigi, Hao PengICLR2024 By reducing the curvature of the loss surface in the parameter space, Sharpness-aware minimization (SAM) yields widespread robustness improvement under domain transfer. Instead of focusing on parameters, however, this work considers the transferability of…
  • What's In My Big Data?

    Yanai Elazar, Akshita Bhagia, Ian Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane Suhr, Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hanna Hajishirzi, Noah A. Smith, Jesse DodgeICLR2024 Large text corpora are the backbone of language models. However, we have a limited understanding of the content of these corpora, including general statistics, quality, social factors, and inclusion of evaluation data (contamination). In this work, we propose…
  • Estimating the Causal Effect of Early ArXiving on Paper Acceptance

    Yanai Elazar, Jiayao Zhang, David Wadden, Boshen Zhang, Noah A. SmithCLearR2024 What is the effect of releasing a preprint of a paper before it is submitted for peer review? No randomized controlled trial has been conducted, so we turn to observational data to answer this question. We use data from the ICLR conference (2018--2022) and…
  • Calibrating Large Language Models with Sample Consistency

    Qing Lyu, Kumar Shridhar, Chaitanya Malaviya, Li Zhang, Yanai Elazar, Niket Tandon, Marianna Apidianaki, Mrinmaya Sachan, Chris Callison-BurcharXiv2024 Accurately gauging the confidence level of Large Language Models' (LLMs) predictions is pivotal for their reliable application. However, LLMs are often uncalibrated inherently and elude conventional calibration techniques due to their proprietary nature and…
  • OLMo: Accelerating the Science of Language Models

    Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord, A. Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Daniel Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk, Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, Hanna HajishirziarXiv2024 Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of…
  • Paloma: A Benchmark for Evaluating Language Model Fit

    Ian Magnusson, Akshita Bhagia, Valentin Hofmann, Luca Soldaini, A. Jha, Oyvind Tafjord, Dustin Schwenk, Evan Pete Walsh, Yanai Elazar, Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hanna Hajishirzi, Noah A. Smith, Kyle Richardson, Jesse DodgearXiv2023 Language models (LMs) commonly report perplexity on monolithic data held out from training. Implicitly or explicitly, this data is composed of domains$\unicode{x2013}$varying distributions of language. Rather than assuming perplexity on one distribution…
  • Catwalk: A Unified Language Model Evaluation Framework for Many Datasets

    Dirk Groeneveld, Anas Awadalla, Iz Beltagy, Akshita Bhagia, Ian Magnusson, Hao Peng, Oyvind Tafjord, Pete Walsh, Kyle Richardson, Jesse DodgearXiv.org2023 The success of large language models has shifted the evaluation paradigms in natural language processing (NLP). The community's interest has drifted towards comparing NLP models across many tasks, domains, and datasets, often at an extreme scale. This imposes…
  • Fine-Grained Human Feedback Gives Better Rewards for Language Model Training

    Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A. Smith, Mari Ostendorf, Hanna HajishirziNeurIPS2023 Language models (LMs) often exhibit undesirable text generation behaviors, including generating false, toxic, or irrelevant outputs. Reinforcement learning from human feedback (RLHF) - where human preference judgments on LM outputs are transformed into a…
  • How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources

    Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu, David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, Hanna HajishirziNeurIPS2023 In this work we explore recent advances in instruction-tuning language models on a range of open instruction-following datasets. Despite recent claims that open models can be on par with state-of-the-art proprietary models, these claims are often accompanied…
  • RealTime QA: What's the Answer Right Now?

    Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Velocity Yu, Dragomir R. Radev, Noah A. Smith, Yejin Choi, Kentaro InuiNeurIPS2023 We introduce R EAL T IME QA, a dynamic question answering (QA) platform that announces questions and evaluates systems on a regular basis (weekly in this version). R E AL T IME QA inquires about the current world, and QA systems need to answer questions about…